Search results for "fossil pigments"
showing 2 items of 2 documents
Long-term changes in pigmentation of arctic Daphnia provide potential for reconstructing aquatic UV exposure
2016
Abstract Despite the biologically damaging impacts of solar ultraviolet radiation (UV) in nature, little is known about its natural variability, forcing mechanisms, and long-term effects on ecosystems and organisms. Arctic zooplankton, for example the aquatic keystone genus Daphnia (Crustacea, Cladocera) responds to biologically damaging UV by utilizing photoprotective strategies, including pigmentation. We examined the preservation and content of UV-screening pigments in fossil Daphnia remains (ephippia) in two arctic lake sediment cores from Cornwallis Island (Lake R1), Canada, and Spitsbergen (Lake Fugledammen), Svalbard. The aims were to document changes in the degree of UV-protective p…
Environmental drivers and abrupt changes of phytoplankton community in temperate lake Lielais Svētiņu, Eastern Latvia, over the last Post-Glacial per…
2021
Understanding the long-term dynamics of ecological communities on the centuries-to-millennia scale is important for explaining the emergence of present-day biodiversity patterns and for predicting possible future scenarios. Fossil pigments and ancient DNA present in various sedimentary deposits can be analysed to study long-term changes in ecological communities. We analysed recent compilations of data, including fossil pigments, microfossils, and molecular inventories from the sedimentary archives, to understand the impact of gradual versus abrupt climate changes on the ecosystem status of a regional model lake over the last ~14.5 kyr. Such long and complete paleo-archives are scarce in No…